266 research outputs found

    Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks

    Get PDF
    A new design technique for linear-phase FIR filters, based on maximally flat buildiing blocks, is presented. The design technique does not involve iterative approximations and is, therefore, fast. It gives rise to filters that have a monotone stopband response, as required in some applications. The technique is partially based on an interpolative scheme. Implementation of the obtained filter designs requires a much smaller number of multiplications than maximally flat (MAXFLAT) FIR filters designed by the conventional approach. A technique based on FIR spectral transformations to design new multiplierless FIR filter structures is then advanced, and multiplierless implementations for sharp cutoff specifications are included

    Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the domestic fowl, Gallus gallus domesticus

    Get PDF
    When females are sexually promiscuous, sexual selection continues after insemination through sperm competition and cryptic female choice, and male traits conveying an advantage in competitive fertilization are selected for. Although individual male and ejaculate traits are known to influence paternity in a competitive scenario, multiple mechanisms co-occur and interact to determine paternity. The way in which different traits interact with each other and the mechanisms through which their heritability is maintained despite selection remain unresolved. In the promiscuous fowl, paternity is determined by the number of sperm inseminated into a female, which is mediated by male social dominance, and by the quality of the sperm inseminated, measured as sperm mobility. Here we show that: (i) the number of sperm inseminated determines how many sperm reach the female sperm-storage sites, and that sperm mobility mediates the fertilizing efficiency of inseminated sperm, mainly by determining the rate at which sperm are released from the female storage sites, (ii) like social status, sperm mobility is heritable, and (iii) subdominant males are significantly more likely to have higher sperm mobility than dominant males. This study indicates that although the functions of social status and sperm mobility are highly interdependent, the lack of phenotypic integration of these traits may maintain the variability of male fitness and heritability of fertilizing efficiency

    Sophisticated sperm allocation in male fowl

    Get PDF
    When a female is sexually promiscuous, the ejaculates of different males compete for the fertilization of her eggs; the more sperm a male inseminates into a female, the more likely he is to fertilize her eggs. Because sperm production is limited and costly, theory predicts that males will strategically allocate sperm (1) according to female promiscuity, (2) saving some for copulations with new females, and (3) to females producing more and/or better offspring. Whether males allocate sperm in all of these ways is not known, particularly in birds where the collection of natural ejaculates only recently became possible. Here we demonstrate male sperm allocation of unprecedented sophistication in the fowl Gallus gallus. Males show status-dependent sperm investment in females according to the level of female promiscuity; they progressively reduce sperm investment in a particular female but, on encountering a new female, instantaneously increase their sperm investment; and they preferentially allocate sperm to females with large sexual ornaments signalling superior maternal investment. Our results indicate that female promiscuity leads to the evolution of sophisticated male sexual behaviour

    Sophisticated sperm allocation in male fowl

    Get PDF
    When a female is sexually promiscuous, the ejaculates of different males compete for the fertilization of her eggs; the more sperm a male inseminates into a female, the more likely he is to fertilize her eggs. Because sperm production is limited and costly, theory predicts that males will strategically allocate sperm (1) according to female promiscuity, (2) saving some for copulations with new females, and (3) to females producing more and/or better offspring. Whether males allocate sperm in all of these ways is not known, particularly in birds where the collection of natural ejaculates only recently became possible. Here we demonstrate male sperm allocation of unprecedented sophistication in the fowl Gallus gallus. Males show status-dependent sperm investment in females according to the level of female promiscuity; they progressively reduce sperm investment in a particular female but, on encountering a new female, instantaneously increase their sperm investment; and they preferentially allocate sperm to females with large sexual ornaments signalling superior maternal investment. Our results indicate that female promiscuity leads to the evolution of sophisticated male sexual behaviour

    Verification of a standardized method for inserting intramuscular EMG electrodes into uniquely oriented segments of gluteus minimus and gluteus medius

    Get PDF
    Guidelines for assessing the function of gluteus minimus and gluteus medius with electromyography (EMG) traditionally offer one electrode placement site per muscle. However, anatomical studies suggest that there are two uniquely oriented segments within gluteus minimus (anterior and posterior), and three within gluteus medius (anterior, middle, and posterior) with potential for independent function. Assessment of these muscles with one electrode may therefore provide only a limited account of their role. Thus, the aim of this cadaveric study was to verify guidelines for placing intramuscular electrodes into two uniquely oriented segments of gluteus minimus, and three segments of gluteus medius. The guidelines were developed with reference to anatomical reports, cadaveric observation and real-time ultrasound imaging in vivo. Five cadaveric gluteal regions were marked for intramuscular electrode insertions based on these guidelines. Intramuscular electrodes were inserted into the marked regions of gluteus minimus (2Γ—) and gluteus medius (3Γ—) with the aid of a 15 cm biopsy needle. Systematic dissection revealed that electrodes were successfully inserted into uniquely oriented segments of gluteus minimus and medius. The orientation of fascicles surrounding each electrode was also consistent with segmental descriptions in past anatomical research. The findings of this research suggest that the guidelines described may be used to assess the functional role of segments within gluteus minimus and medius in health and dysfunction using EMG. Finally, electromyographers intent on investigating the role of posterior gluteus minimus must be cautious of the superior gluteal neurovascular bundle. Clin. Anat., 2013

    Multi-copy gene family evolution on the avian W chromosome

    Get PDF
    The sex chromosomes often follow unusual evolutionary trajectories. In particular, the sex-limited Y and W chromosomes frequently exhibit a small but unusual gene content in numerous species, where many genes have undergone massive gene amplification. The reasons for this remain elusive with a number of recent studies implicating meiotic drive, sperm competition, genetic drift and gene conversion in the expansion of gene families. However, our understanding is primarily based on Y chromosome studies as few studies have systematically tested for copy number variation on W chromosomes. Here, we conduct a comprehensive investigation into the abundance, variability, and evolution of ampliconic genes on the avian W. First, we quantified gene copy number and variability across the duck W chromosome. We find a limited number of gene families as well as conservation in W-linked gene copy number across duck breeds, indicating that gene amplification may not be such a general feature of sex chromosome evolution as Y studies would initially suggest. Next, we investigate the evolution of HINTW, a prominent ampliconic gene family hypothesized to play a role in female reproduction and oogenesis. In particular, we investigate the factors driving the expansion of HINTW using contrasts between modern chicken and duck breeds selected for different female-specific selection regimes and their wild ancestors. Although we find the potential for selection related to fecundity in explaining small-scale gene amplification of HINTW in the chicken, purifying selection seems to be the dominant mode of evolution in the duck. Together, this challenges the assumption that HINTW is key for female fecundity across the avian phylogeny

    Experimental evolution of a novel sexually antagonistic allele.

    Get PDF
    Evolutionary conflict permeates biological systems. In sexually reproducing organisms, sex-specific optima mean that the same allele can have sexually antagonistic expression, i.e. beneficial in one sex and detrimental in the other, a phenomenon known as intralocus sexual conflict. Intralocus sexual conflict is emerging as a potentially fundamental factor for the genetic architecture of fitness, with important consequences for evolutionary processes. However, no study to date has directly experimentally tested the evolutionary fate of a sexually antagonistic allele. Using genetic constructs to manipulate female fecundity and male mating success, we engineered a novel sexually antagonistic allele (SAA) in Drosophila melanogaster. The SAA is nearly twice as costly to females as it is beneficial to males, but the harmful effects to females are recessive and X-linked, and thus are rarely expressed when SAA occurs at low frequency. We experimentally show how the evolutionary dynamics of the novel SAA are qualitatively consistent with the predictions of population genetic models: SAA frequency decreases when common, but increases when rare, converging toward an equilibrium frequency of ∼8%. Furthermore, we show that persistence of the SAA requires the mating advantage it provides to males: the SAA frequency declines towards extinction when the male advantage is experimentally abolished. Our results empirically demonstrate the dynamics underlying the evolutionary fate of a sexually antagonistic allele, validating a central assumption of intralocus sexual conflict theory: that variation in fitness-related traits within populations can be maintained via sex-linked sexually antagonistic loci

    By hook or by crook? Morphometry, competition and cooperation in rodent sperm

    Get PDF
    Background Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or β€œtrains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm. Methodology/Principal Findings Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse. Conclusions Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    No Detectable Fertility Benefit from a Single Additional Mating in Wild Stalk-Eyed Flies

    Get PDF
    Background: Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.Methodology/Principal Findings: Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.Conclusions/Significance: Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species
    • …
    corecore